US009336331B2

a2 United States Patent 10) Patent No.: US 9,336,331 B2
Hadar et al. (45) Date of Patent: May 10, 2016
(54) DETECTING, USING, AND SHARING IT 7.424,530 B2* 9/2008 Chagoly G06F710 15//37422
DESIGN PATTERNS AND ANTI-PATTERNS 7,627,861 B2* 12/2009 Smithetal. 717/i44
7,730,364 B2* 6/2010 Changcc.o.... GO6F 11/008
(75) Inventors: Eitan Hadar, Nesher (IL); Kieron John e 714/47.2
James Connelly, Brighton (GB); Olga 7,734451 B2* 6/2010 MacArthur GO5B 13/0295
Lagunova, Butler, PA (US); Peter 7,757,214 B1* 7/2010 Palczak et al ;(1)%5?
. 757, alczak etal. ...
Anthony Lazzaro, Great River, NY 7.769,562 B2* 82010 Vaidyanathan ... GOGF 11/008
us) 700/29
7,818,723 B2* 10/2010 AliKacem GOGF 9/524
(73) Assignee: CA, INC,, Islandia, NY (US) 717/131
8,136,090 B2* 3/2012 Bossetal.ccocennn. 717/121
(*) Notice: Subject to any disclaimer, the term of this 2003%202055’%3 ?1 : Z; %8 (Ié E?rmtlkjt al. ... ; (1)3; ;gi
. 3 aul emer ...
patent is extended or adjusted under 35 2004/0034698 Al* 2/2004 Abu-Husein et al. 709/223
U.S.C. 154(b) by 630 days. 2005/0086246 A1* 4/2005 Wood GO6F 17/30289
2005/0166193 Al* 7/2005 Smithetal.coouennen. 717/143
(21) Appl. No.: 12/767,357 2005/0235248 Al* 10/2005 Victoriaetal. 717/102
2006/0053422 Al* 3/2006 Alikacem et al. 718/100
(22) Filed: Apr. 26, 2010 2006/0161884 Al* 7/2006 Lubrechtetal. 717/104
2006/0225032 Al* 10/2006 Klerketal.cccoeunenne 717/105
(65) Prior Publication Data (Continued)
US 2011/0265064 A1 Oct. 27, 2011 OTHER PUBLICATIONS
51) Int.Cl “automatic” , Dictionary.com , retreived May 16, 2014 , <http://
G 0-6F 9 ' (2006.01) dictionary.reference.com/browse/automatic>, p. 1.*
GOGF 17/30 (2006.01) (Continued)
(52) US.CL . o
CPC oo, GOGF 1730985 (2013.01); GOGF 836 . rmary Examiner —Thuy Dao
(2013.01); GOGF 8/77 (2013.01) Assistant Examiner — Samuel Hayim
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Gilliam IP PLLC
None o) (57) ABSTRACT
See application file for complete search history. Various embodiments described and illustrated herein
(56) References Cited include at least one of systems, methods, and software to

U.S. PATENT DOCUMENTS

6,574,605 B1* 6/2003 Sandersetal. 705/7.26
6,681,344 B1* 1/2004 Andrew 714/38.14
6,742,141 B1* 5/2004 Millercccovviinininn. 714/26
6,851,105 B1* 2/2005 Coad et al. . 717/106
7,065,624 B1* 6/2006 Zahavi 711/170
7,213,231 B1* 5/2007 Bandholeetal. 717/121
7,237,023 B2* 6/2007 Menard G06Q 30/06
709/223

7,363,543 B2* 4/2008 Peebles GO6F 11/0715
714/26

identify, use, or share patterns and anti-patterns. Embodi-
ments that include pattern and anti-pattern identification
operate to identify candidate patterns and anti-patterns within
adeployed system and to confirm or receive confirmation that
the identified candidates are indeed patterns or anti-patterns.
Embodiments that use patterns and anti-patterns operate to
consume the identified patterns and anti-patterns to improve
system performance. The embodiments that share patterns
and anti-patterns include mechanisms whereby patterns and
anti-patterns can be sent to and received from other systems.

19 Claims, 8 Drawing Sheets

’/"\ 900

902

MEASURE PERFORMANCE OF A COMPUTING SYSTEM BY APPLYING
AT LEAST ONE PERFORMANCE METRIC RETRIEVED FROM A
PERFORMANCE METRIC DATABASE

S04

y
WHEN APPLYING THE AT LEAST ONE PERFORMANCE METRIC
REVEALS A PERFORMANCE 188UE WITHIN THE COMPUTING SYSTEM,
QUERY A PATTERN REPOSITORY TO IDENTIFY A PATTERN, THE
IMPLEMENTATION OF WHICH 1§ LIKELY TO IMPROVE PERFORMANCE
OF THE COMPUTING SYSTEM WITH REGARD TO THE REVEALED
PERFORMANCE ISSUE

f 906

IMPLEMENT THE IDENTIFIED PATTERN IN THE COMPUTING SYSTEM |

US 9,336,331 B2
Page 2

(56)

2006/0253840
2007/0083500
2007/0156420
2007/0157156
2008/0134135
2009/0031176

2009/0193064
2010/0145755
2011/0022551
2011/0213738
2011/0270804

References Cited

U.S. PATENT DOCUMENTS

Al*
Al*
Al*
Al*
Al*
Al*

Al*
Al*
Al*
Al*
Al*

11/2006
4/2007
7/2007
7/2007
6/2008
1/2009

7/2009
6/2010
1/2011
9/2011
11/2011

Cruickshank et al. 717/127
Zibitsker GO6F 9/5083
Meier etal.coccvvvvvnrnne 705/1
Meier et al. 717/101
Elaasarcccocceevvnnrne, 717/104
Ide oo, GO6F 11/0709

714/47.2
Chenetal.cccoeevvnnne 707/204
Narkilahti . 705/8
Dixon 706/12
Senetal. ..coovvvvvierinns 706/12
Hadaretal. 707/684

OTHER PUBLICATIONS
Aaron Kim , “Enterprise 2.0 Anti-Patterns, ROI and metrics” , IBM ,
2009 , <http://cdn.oreillystatic.com/en/assets/ 1/event/22/
Enterprise%20Web%202_0%20Anti-
Patterns,%20R0OL,%20and%20Metrics%20Presentation.pdf> , pp.
1-81.*
Hakan Hacigumus , “Anti-patterns: Integrating Distributed and Het-
erogeneous Data Sources in SOAs ” , IEEE , 2008 , <http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4578306>
pp. 1-2.*
Trevor Parsons , “A Framework for Detecting Performance Design
and Deployment Antipatterns in Component Based Enterprise Sys-
tems” , ACM , 2005 , <http://delivery.acm.org/10.1145/1110000/
1101147/a7-parsons.pdf>, pp. 1-5.*

* cited by examiner

US 9,336,331 B2

Sheet 1 of 8

May 10, 2016

U.S. Patent

vt

[

ol

N

o

\O
N

f4°

WYZL W9 WdZL WVE Wzl
0

5z

05
=7 _

0oL
— SUNOH ¥Z 15V SHUMNOH ¥2 1SV
SNLVLS AMYANNS| SNLYLS AMYWNNS ALIIEYIVAY
SHALNOY FHO00 40 8'HYLE0
aod | w001 [v o HOIH | 310D ANIMNC O
aodd | %00l | 1w S/ . HOH |SY¥31N0Y 3903 O
aoYd | %ool | 7w g = HOIH | AYES LM0ddNS O
ao¥d | %00l [1w S - HOIH |SHILNOY FHOD @

A0 dO [TIVAY NS [ALTVAD [H LI VAHIALNOH ERIICER

O
e
b

SNLVYLS J0IAMES

\

1ASDSIN ALINIEVIIVAY 30IAH3ES

Qow.\

U.S. Patent May 10, 2016 Sheet 2 of 8 US 9,336,331 B2

/- 202 /- 204 /- 208 /- 208

CLIENT CLIENT CLIENT CLIENT
e SWITCH(ES)
212
220 210 -
FIREWALL

INTERNET

/-218 /-216

FIREWALL ROUTER(S)

LOCAL
NETWORK

CMDB
PATTERNS
METRICS

- SWITCH(ES) rzzg r SWITCH(ES)
224 GLIENT 226
| SYSTEM AND
SERVER(S) 9o | INFRASTRUCTURE
MONITORING AND
SYSTEMS MANAGMENT
APPLICATIONS /
STORAGE e
DBEMS SERVER
/ AND STORAGE
230

.7

U.S. Patent May 10, 2016 Sheet 3 of 8 US 9,336,331 B2

/- 302

DATABASE SERVER DB3-#23

NAME ERP-BW-1

DESCRIPTION MAIN DB FOR ERP BW IN EMEA

OF LICENSES | 4

COST/LICENSE | 18000.00

MAINT COSTS 1200.00

fh

/- 402

DATABASE SERVER

NAME STRING

DESCRIPTION STRING

OF LICENSES | NUMBER

COST/LICENSE | MONEY

MAINT COSTS MONEY

it

U.S. Patent May 10, 2016 Sheet 4 of 8 US 9,336,331 B2

SERVER 08 A
P o,
m /@$~
= 4
X
4}
SERVER 05 SERVER OS SERVER OS SERVER OS
aH
(8,
L
g
-
3
APPLICATION & APPLICATION
SERVER SERVER
DBMS
J2EE J2EE
CONTAINER CONTAINER

EJB

s

/ 608

PROVISIONING
APPLICATION

U.S. Patent May 10, 2016 Sheet 5 of 8 US 9,336,331 B2
/ 602 612
SYSTEM
MANAGEMENT V/ 600
-~ 504
METRIC METRIC
MONITOR DATABASE
Vs 806 514
PATTERN AND
ANTI-PATTERN
MODULE NETWORK
i
DATABASE

8616

SYSTEM
818 PATTERN

y

U.S. Patent May 10, 2016 Sheet 6 of 8 US 9,336,331 B2

?02\ /?’ED /704
f

\

| { - 725
f//
PROGRAM
706
PROCESSING /|
UNIT VOLATILE
/,— 708
NON-VOLATILE
240 720 \
REMOVABLE / COMMUNICATION
STORAGE /71 5 CONNECTION
NON-REMOVABLE
STORAGE INFUT OUTRUT
|

<. H7 ./

MEASURE PERFORMANCE OF A COMPUTING SYSTEM BY APPLYING
AT LEAST ONE PERFORMANCE METRIC RETRIEVED FROM A
PERFORMANCE METRIC DATABASE

l 904
WHEN APPLYING THE AT LEAST ONE PERFORMANCE METRIC
REVEALS A PERFORMANCE ISSUE WITHIN THE COMPUTING SYSTEM,
QUERY A PATTERN REPOSITORY TO IDENTIFY A PATTERN, THE
IMPLEMENTATION OF WHICH IS LIKELY TO IMPROVE PERFORMANCE
OF THE COMPUTING SYSTEM WITH REGARD TO THE REVEALED
PERFORMANCE ISSUE

l /- 806

IMPLEMENT THE IDENTIFIED PATTERN IN THE COMPUTING SYSTEM

T

U.S. Patent May 10, 2016 Sheet 7 of 8 US 9,336,331 B2

A 800 /- 802

MAINTAIN, IN A CONFIGURATION ITEM DATABASE, DATA
REFRESENTATIVE OF CONFIGURATION ITEM SETTINGS OF A
COMPUTING SYSTEM, THE CONFIGURATION ITEM DATABASE

INCLUDING CONFIGURATION ITEM DATA REPRESENTATIVE OF
CURRENT CONFIGURATION SETTINGS AND PREVIOUS
CONFIGURATION SETTINGS, THE CONFIGURATION ITEM DATA
INCLUDING A TIME ELEMENT IDENTIFYING A PERIOD WHEN EACH
PARTICULAR ITEM OF CONFIGURATION ITEM DATA WAS OPERATIVE
WITHIN THE COMPUTING SYSTEM

l s 804

PERIGDICALLY APPLY AT LEAST ONE PERFORMANCE METRIC TO
THE COMPUTING SYSTEM THROUGH EXECUTION OF INSTRUCTIONS
ON AT LEAST ONE COMPUTER PRCGCESSOR TC OBTAIN
PERFORMANCE METRIC DATA INDICATIVE OF PERFORMANCE WITH
REGARD TO AT LEAST A PORTION OF THE COMPUTING SYSTEM

l / 806

STORE, IN A PERFORMANCE METRIC DATA DATABASE, THE
PERFORMANCE METRIC DATAWITH A TIME ELEMENT
REPRESENTATIVE OF A TIME WHEN THE PERFORMANCE METRIC
DATA WAS GENERATED

l s 808

BASED ON PERFORMANCE LEVELS OVER TiIME, IDENTIFY

CANDIDATE CONFIGURATION SETTING PATTERNS ASSOCIATED
WITH MAINTAINED AND IMPROVED SERVICE LEVELS

CANDIDATE CONFIGURATION SETTING ANTI-PATTERNS
ASSOCIATED WITH DETERIORATING AND NON-IMPROVING, LOW
SERVICE LEVELS

l /-819

STORE DATA REPRESENTATIVE OF THE IDENTIFIED CANDIDATE
CONFIGURATION SETTING PATTERNS AND ANTI-PATTERNS

i d

U.S. Patent May 10, 2016 Sheet 8 of 8 US 9,336,331 B2

1000
/ /‘1 802

RECEIVE PATTERN DATA STRUCTURES FROM A PLURALITY OF
CONSTITUENT SYSTEM IMPROVEMENT MODULE SYSTEMS, THE
PATTERN DATA STRUCTURES EACH INCLUDING DATA
REPRESENTATIVE OF COMPUTING SYSTEM CONFIGURATION ITEM
CONFIGURATION SETTINGS DEFINING A PATTERN OR ANTI-PATTERN
AND METADATA DESCRIPTIVE OF THE PATTERN OR ANTI-PATTERN
REPRESENTED BY THE DATA STRUCTURE

l r‘? 004

COMPARE A RECEIVED PATTERN DATA §TRUCTURE TO OTHER
RECEIVED PATTERN DATA STRUCTURES TO IDENTIFY VARIATIONS
AND GENERATE GROUPS OF SIMILAR PATTERN DATA STRUCTURES

l /“E 006

PRESENT A VIEW OF COMMONALITY BETWEEN A GROUP OF SIMILAR
PATTERN DATA STRUCTURES

l /“E 008

RECEIVE INPUT TO ABSTRACT THE COMMONALITY BETWEEN THE
GROUP OF SIMILAR PATTERN DATA STRUCTURES TO GENERATE A
SINGLE TEMPLATE PATTERN DATA STRUCTURE

l /‘E(}“i(}

STORE THE TEMPLATE PATTERN DATA STRUCTURE IN ANETWORK
LOCATION ACCESSIBLE BY THE CONSTITUENT SYSTEM
IMPROVEMENT MOBDULE SYSTEMS TO ALLOW THE CONSTITUENT
SYSTEM IMPROVEMENT MODULE SYSTEMS TO DOWNLOAD THE
TEMPLATE PATTERN DATA STRUCTURE

el

US 9,336,331 B2

1

DETECTING, USING, AND SHARING IT
DESIGN PATTERNS AND ANTI-PATTERNS

BACKGROUND INFORMATION

In software engineering and enterprise systems, patterns
refer to recommendations for designing well-known solu-
tions to well-defined problems. Anti-Patterns are described as
the symptoms, or other system properties, that indicate a bad
solution, or anti-pattern, was implemented for a known prob-
lem. Such prototypical micro-architecture solutions enable
copying of patterns and adaptation of particular design struc-
tures to solve recurrent problems described by the copied
patterns. Also, anti-patterns enable evaluation of deployed
solutions to identify problems.

Pattern and anti-pattern detection has been a difficult pro-
cess. It is quite possible that there are many patterns and
anti-patterns that have been implemented many times, but not
identified. Without being identified, patterns and anti-patterns
cannot be used to assist in system design and configuration or
to identify systems having design and configuration issues
before problems arise.

SUMMARY

Various embodiments described and illustrated herein
include at least one of systems, methods, and software to
identify, use, or share patterns and anti-patterns. Embodi-
ments that include pattern and anti-pattern identification
operate to identify candidate patterns and anti-patterns within
adeployed system and to confirm or receive confirmation that
the identified candidates are indeed patterns or anti-patterns.
Embodiments that use patterns and anti-patterns operate to
consume the identified patterns and anti-patterns to improve
system performance. The embodiments that share patterns
and anti-patterns include mechanisms whereby patterns and
anti-patterns can be sent to and received from other systems.

Some embodiments include a method that may be per-
formed to identify patterns and anti-patterns within a system.
Embodiments of this method include maintaining, in a con-
figuration item database stored on a data storage device, data
representative of configuration item settings of a computing
system. The configuration item database may include con-
figuration item data that is representative of current configu-
ration settings and previous configuration settings. The con-
figuration item data typically includes a time element
identifying a period when each particular item of configura-
tion item data was operative within the computing system.
The method further includes periodically applying at least
one performance metric to the computing system through
execution of instructions on at least one computer processor
to obtain performance metric data indicative of performance
with regard to at least a portion of the computing system.
Additionally the method, based on performance levels over
time, includes identifying candidate configuration setting
patterns associated with maintained and improved service
levels. The identifying method also includes identifying can-
didate configuration setting anti-patterns associated with
deteriorating and non-improving, low service levels. The
method may then store data representative of the identified
candidate configuration setting patterns and anti-patterns.

Another embodiment is in the form of'a system including at
least one processor, at least one memory device, and at least
one data storage device. The system also includes a pattern
repository stored on the at least one data storage device. The
pattern repository stores pattern data structures each includ-
ing data representative of computing system configuration

10

15

20

25

30

35

40

45

50

55

60

65

2

item configuration settings defining a pattern or anti-pattern.
The system may also include a performance metric database
storing performance metrics executable by the at least one
processor to measure performance of a computing system
based on performance related data obtained from processes of
the computing system and devices upon which the computing
system operates. The performance metric database also stores
performance metric data provided as a result of applying
performance metrics, each performance metric data item
including a time data element identifying when the perfor-
mance metric data was generated.

The system further includes a system improvement module
having instructions stored and retrievable from the at least one
data storage device in to the at least one memory device that
are executable by the at least one processor to perform various
tasks. These tasks include measuring performance of the
computing system by applying at least one performance met-
ric retrieved from the performance metric database. When
applying the at least one performance metric reveals a perfor-
mance issue within the computing system, the tasks include
querying the pattern repository to identify a pattern, the
implementation of which is likely to improve performance of
the computing system with regard to the revealed perfor-
mance issue and implementing the identified pattern in the
computing system.

Another embodiment is in the form of a computer-readable
storage medium. The computer readable storage medium
includes instructions stored thereon, which when executed by
at least one processor of a computer, cause the computer to
perform various tasks. These tasks include receiving pattern
data structures from a plurality of constituent system
improvement module systems, the pattern data structures
each including data representative of computing system con-
figuration item configuration settings defining a pattern or
anti-pattern and metadata descriptive of the pattern or anti-
pattern represented by the data structure. These tasks further
include comparing a received pattern data structure to other
received pattern data structures to identify variations and
generate groups of similar pattern data structures and present-
ing a view of commonality between a group of similar pattern
data structures. The tasks that the instructions cause the com-
puter to perform also include receiving input to abstract the
commonality between the group of similar pattern data struc-
tures to generate a single template pattern data structure and
storing the template pattern data structure in a network loca-
tion accessible by the constituent system improvement mod-
ule systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a user interface illustration according to an
example embodiment.

FIG. 2 is a schematic diagram of a system according to an
example embodiment.

FIG. 3 illustrates a data structure according to an example
embodiment.

FIG. 4 illustrates a data structure according to an example
embodiment.

FIG. 5 illustrates a graphical representation of an
abstracted service model according to an example embodi-
ment.

FIG. 6 is a logical block diagram of a system according to
an example embodiment.

FIG. 7 is ablock diagram of a computing device according
to an example embodiment.

FIG. 8 is a flow diagram of a method according to an
example embodiment.

US 9,336,331 B2

3

FIG. 9 is a flow diagram of a method according to an
example embodiment.

FIG. 10 is a flow diagram of a method according to an
example embodiment.

DETAILED DESCRIPTION

As mentioned above, in software engineering and enter-
prise systems, patterns refer to recommendations for design-
ing well-known solutions to well-defined problems. Anti-
Patterns are symptoms, or other system properties, that
indicate a bad solution, or anti-pattern, was implemented for
aknown problem. Such prototypical micro-architecture solu-
tions enable copying of patterns and adaptation of particular
design structures to solve recurrent problems described by the
copied patterns. Also, anti-patterns enable evaluation of
deployed solutions to identify problems that may or may not
be apparent.

Patterns are therefore sophisticated tips and tricks indicat-
ing that a certain solution was implemented successfully over
a set of solutions and constructed approximately the same
way. Anti-patterns are the converse where the sophisticated
tips and tricks indicate that a certain solution was imple-
mented unsuccessfully over a set of solutions and constructed
approximately the same way. With these definitions of pat-
terns and anti-patterns in mind, for ease of explanation, pat-
terns and anti-patterns are at times commonly referred to as
patterns.

Information Technology (IT) design often involves com-
binations of IT infrastructure technology known as Configu-
ration Items (Cls), as well as other supporting processes that
collectively, based on modeled associations, construct a logi-
cal group of Cls, known as a service model. The Cls may
represent elements of IT infrastructure technology such as
routers, switches, data storage devices, servers, client com-
puters, logical server programs and processes, and applica-
tions and processes that execute on server or client computers.
Service models may be associated with metrics. The associ-
ated metrics that evaluate parameters of the service model to
obtain indicators of quality, availability, risk, and heath levels
of an underlying system, and what constituent CIs are influ-
encing the service model. These metrics and indicators can be
defined with Service Level Agreements or Objectives (SLA
or SLO) and their associated operational level agreements.

A pattern, in some embodiments, is a set of Cls of a service
model associated with maintained or improved service levels
as measured by at least one SLA or other metric. An anti-
pattern, in some embodiments, is a set of Cls of a service
model associated with deteriorating or non-improving, low
service levels as measured by at least one SLA or other
metric. An anti-pattern may also include a set of Cls of a
service model that may create future system scalability
issues.

Patterns and anti-patterns are represented and stored in a
pattern data structure. A pattern data structure includes data
representative of CI configuration settings defining a pattern
or anti-pattern. The data representative of the CI configura-
tion settings defining a pattern or anti-pattern can be instan-
tiated in a target computing system to implement the pattern
or to detect the anti-pattern. Pattern data structures are stored
typically in a pattern repository, such as on a hard disk of a
computing device. To facilitate searching and identification
of'patterns and anti-patterns of interest, the pattern data struc-
ture may include additional data such as metadata that facili-
tates searching, provides data to present a visualization of the
pattern or anti-pattern, provides a description of the purposes
of the pattern, identifies affected configuration items, pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

cesses, and services, and other data depending on the particu-
lar embodiment. However, before a pattern or anti-pattern
may be utilized to identify a possible system configuration,
the pattern or anti-pattern needs to be defined.

Various embodiments described and illustrated herein
include at least one of systems, methods, and software to
identify, use, or share patterns and anti-patterns. Such
embodiments are described below in this order, pattern and
anti-pattern identification, use, and sharing. Embodiments
that include pattern and anti-pattern identification operate to
identify candidate patterns and anti-patterns within a
deployed system and to confirm or receive confirmation that
the identified candidates are indeed patterns or anti-patterns.
Embodiments that use patterns and anti-patterns operate to
consume the identified patterns and anti-patterns to improve
system performance. The embodiments that share patterns
and anti-patterns include mechanisms whereby patterns and
anti-patterns can be sent to and received from other systems.

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the inventive subject matter may be practiced. These
embodiments are described in sufficient detail to enable those
skilled in the art to practice them, and it is to be understood
that other embodiments may be utilized and that structural,
logical, and electrical changes may be made without depart-
ing from the scope of the inventive subject matter. Such
embodiments of the inventive subject matter may be referred
to, individually and/or collectively, herein by the term “inven-
tion” merely for convenience and without intending to vol-
untarily limit the scope of this application to any single inven-
tion or inventive concept if more than one is in fact disclosed.

The following description is, therefore, not to be taken in a
limited sense, and the scope of the inventive subject matter is
defined by the appended claims.

The functions or algorithms described herein are imple-
mented in hardware, software or a combination of software
and hardware in one embodiment. The software comprises
computer executable instructions stored on computer read-
able media such as memory or other type of storage devices.
Further, described functions may correspond to modules,
which may be software, hardware, firmware, or any combi-
nation thereof. Multiple functions are performed in one or
more modules as desired, and the embodiments described are
merely examples. The software is executed on a digital signal
processor, ASIC, microprocessor, or other type of processor
operating on a system, such as a personal computer, server, a
router, or, other device capable of processing data including
network interconnection devices.

Some embodiments implement the functions in two or
more specific interconnected hardware modules or devices
with related control and data signals communicated between
and through the modules, or as portions of an application-
specific integrated circuit. Thus, the exemplary process flow
is applicable to software, firmware, and hardware implemen-
tations.

Pattern and Anti-Pattern Detection

Pattern and anti-pattern identification is performed, in
some embodiments, through evaluation of performance met-
ric values over time in view of CI configuration settings and
changes thereto. Performance metrics are typically applied
on a recurring, periodic basis and a record of performance
metric values may be stored in a repository, such as a data-
base. Historical CI configuration setting values may also be
stored in a database with a time element indicating when the

US 9,336,331 B2

5

particular CI configuration settings values were active with
regard to a particular system, device, or other IT resource. A
process may then execute to identify potential patterns and
anti-patterns by associating changes to CI configuration set-
ting values with changes in performance metric values. When
the change in a performance metric value is positive, that may
indicate a potential pattern—while a negative change in the
performance metric value may indicate a potential anti-pat-
tern. Thus, IT system administrators, in some embodiments,
are provided with visualization tools to view and monitor
system health, quality, and risk over various periods to assist
in pattern and anti-pattern identification. The user interface
100 of FIG. 1 is an example of how such visualizations may
be provided.

FIG. 1 is a user interface 100 illustration according to an
example embodiment. The user interface 100 is an example
user interface included in some embodiments to provide visu-
alization options to a system administrator for monitoring
system performance over time. The example user interface
100 provides a view of a current service status 110 with regard
to several services. When one of these listed services is
selected, such as the CORE ROUTERS service 112, details
120 of the CORE ROUTERS service 112 are displayed
within the user interface 100.

The service status 110 portion of the user interface 100
includes rows of data with each row representing various
aspects of the health of a service operating within a system or
computing environment. Note that a service is used herein to
refer to a software service, a device, or group of two or more
software services and devices. Each listed service in the ser-
vice status portion 110 includes data identifying the service,
the priority of the respective service to overall system health,
and a representation of the overall health of the service. The
data represented for each service is typically retrieved from a
performance metric repository, such as a database, and pre-
sented in the user interface 100. The overall health of the
service is typically an aggregation of performance metric
values that measure various aspects of the health of the ser-
vice, such as a quality of service provided, a level of risk of the
service in breaching an SLLA or other requirement, and an
availability of the service. When a particular service is
selected from the listing of services, such as the CORE
ROUTERS service 112, the details of the selected service are
retrieved from the performance metric repository.

The details of the selected service, such as the details 120
of the CORE ROUTERS service 112, that are presented
include an availability summary status 122 over a period,
such as 24 hours. Each of various availability statuses may be
displayed in a pie chart or other representation capable of
conveying a summary of the availability data. Some embodi-
ments include a control for a user to select a period over which
the summary is to be provided, such as the last 24 hours, the
previous week or month, or other period. Some embodiments
may include another summary view 124 of the same data as
the availability summary status 122, but in a different form,
such as a timeline. However, differing summary data with
regard to the selected service may alternatively be provided.

The user interface 100 provides an example view of per-
formance metric data that may be utilized for several pur-
poses. One such purpose is to identify a period of interest for
when a pattern or anti-pattern may be present. In such
instances, the administrator may trigger the start of a process
to generate a pattern or anti-pattern by providing input
through the user interface 100. In other embodiments, a
potential pattern or anti-pattern may be identified automati-
cally through execution of one or more the methods described
herein.

25

30

35

40

45

50

6

FIG. 2 is a schematic diagram of a system 200 according to
an example embodiment. The system 200 is an example of a
system within which patterns and anti-patterns maybe iden-
tified and implemented. The system 200 is provided merely as
an example of a system in which some embodiments may be
relevant. Although the system 200 is illustrated to include
various IT resources, there is no requirement that all or any of
these particular IT resources be present in any embodiment.
Further, even if present in a particular embodiment, the Cls of
these IT resources may not be relevant with regard to pattern
detection, use, or sharing.

The system 200 is a networked computing environment.
The network of the computing environment may include a
connection to the Internet 220. In such embodiments, the
remainder of the network environment is behind a firewall
218 to help shield the network environment from threats. In a
typical configuration, one or more routers 216 then route
traffic to a local network 214. A portion of the local network
214 may be shielded from access by some users or processes
by another firewall 212. In this illustrated embodiment, the
firewall 212 shields clients 202, 204, 206, 208 connected to
the networked computing environment via one or more
switches 210 from certain types of communications or data
over the local network 214.

The local network 214 may also include connections to
other IT resources, such as switches 224, 226 that provide
additional connections to the local network 214. The addi-
tional connections may be utilized by additional clients 228,
servers 230 such as one or more application servers hosting an
enterprise application, database and storage servers 232, and
a system and infrastructure monitoring and management
server 234. The additional connections may also be utilized
by a database 222 storing a configuration management data-
base (CMDB), data representative of patterns and anti-pat-
terns, performance metrics, historic performance metric data,
and other IT resources.

In some embodiments, the hardware devices and processes
within the computing environment, such as the firewalls 218,
212, routers 216, switches 210, 224, 226, servers 230, data-
bases 222, 232, and other devices and processes, include an
agent process that may be leveraged by the system and infra-
structure monitoring and management server 234. The agent
processes of the hardware devices and processes may be
Simple Network Management Protocol (SNMP) agent pro-
cesses through which performance may be measured and
configurations may be modified. In other embodiments, the
agent processes of the hardware devices and processes may
be proprietary agent processes, modified SNMP agent pro-
cesses, or agent processes according to a different network
management protocol. Yet other embodiments include two or
more of such agent processes.

In some embodiments, the system and infrastructure moni-
toring and management server 234 performs several tasks
through various processes. Such tasks may include applica-
tion of performance-monitoring metrics within the net-
worked computing environment 200 and archiving of perfor-
mance metric data, presenting analytic views of performance
metric data such as through the user interface 100 of FIG. 1,
and providing administrator tools to modify CI settings of the
various IT resources of the networked computing environ-
ment 200. Such tasks also include archiving historic CI set-
tings, pattern and anti-pattern identification through evalua-
tion of archived performance metric data of service models
and archived CI settings of respective service models, and
pattern selection and implementation to resolve performance
metric violations and anti-pattern presence.

US 9,336,331 B2

7

In some embodiments, the system and infrastructure moni-
toring and management server 234 applies performance-
monitoring metrics within the networked computing environ-
ment 200. Performance-monitoring metrics, or simply
metrics, measure various aspects of performance of devices
and processes within the networked computing environment
200. One or more metrics may be associated with a service
model and an aggregation of metric result data of the one or
more metrics associated with a particular service model pro-
vides a performance measurement of the particular service
model. A performance metric may be defined by an adminis-
trator to measure response time of hardware networking
devices, latency in process response, availability of a device
or process, available storage capacity of a data storage device,
and other performance characteristics of devices and pro-
cesses. A service model may include one or more aggrega-
tions of metric data to provide an overall measurement of
service model health, quality, risk, availability, or other indi-
cator depending on the embodiment.

In operation, the system and infrastructure monitoring and
management server 234 retrieves metrics for a service model
from a database 222 or other data storage location. The infra-
structure monitoring and management server 234 then
applies the metrics to obtain metric data by sending messages,
such as SNMP messages, to the various devices or processes
that are the subject of the retrieved metrics. The metric data is
then stored, such as in the database 222. The granularity at
which metric data is stored may vary between embodiments.
Some embodiments may store all metric measurements while
other embodiments may store a calculated value or indicator
of one or more of health, quality, risk, availability, or other
calculated value or indicator for a service model. In any event,
when the metric data is stored, a date identifying when the
metric data was generated is also stored.

Administrator tools of the infrastructure monitoring and
management server 234 in some embodiments may include
tools to modify CI settings of the various IT resources of the
networked computing environment 200. Such tools may
include client-based or web-based user interfaces, and under-
lying computer code, providing a view of current CI settings
and allowing the administrator to modify the CI settings.
Such tools may also include client-based or web-based user
interfaces, and underlying computer code, to present a view
of patterns available for implementation with regard to a
particular service model. Such user interfaces may also allow
an administrator to select a pattern for implementation. When
a selection of a pattern is received for implementation, the
infrastructure monitoring and management server 234 may
issue commands to the IT resources of Cls included in the
pattern to modify CI configuration settings. In other embodi-
ments, the infrastructure monitoring and management server
234 may issue one or more commands to a provisioning
process that operates to implement changes in the networked
computing environment 200. In these and other embodi-
ments, one or more change requests may also, or alternatively,
be generated and submitted to a change request system
requesting that the pattern be implemented.

However, when the infrastructure monitoring and manage-
ment server 234 makes changes to CI settings, previous val-
ues of the CI configuration settings are written to a log or
archive of the configuration settings along with a date when
the change was made. The archive of configuration settings
and the stored metric data, both including dates, may then be
used to correlate changes in performance of a service model’s
performance to changes in CI settings of the service model.
For example, a process of the infrastructure monitoring and
management server 234 may operate to identify performance

40

45

55

8

improvements over various periods. For example, if a change
in a health indicator of a service model in the stored metric
data changes more than ten percent, assuming the indicator is
measured by a percentage, over a 24-hour period, the con-
figuration setting archive may then be evaluated to determine
if a change was to the CI configuration settings.

In some embodiments, when a configuration change is
identified, the current configuration of the service model is
compared to the pervious configuration to identify the modi-
fied CI configuration settings. When the health indicator
changes upward, indicating the service model is healthier, the
identified CI configuration settings are stored as a candidate
pattern. When the health indicator changes downward, indi-
cating the service model is less healthy, the identified CI
configuration settings are stored as a candidate anti-pattern.
Candidate patterns and anti-patterns may then be presented in
an interface to an administrator to receive confirmation that
the identified CI configuration settings do form a pattern or
anti-pattern. The administrator may also be presented with
the option to add metadata to the pattern. The metadata may
describe what is accomplished or resolved through imple-
mentation of the CI configuration settings of the pattern, an
association to a particular hardware device type or model, an
association to a software program and version, and other
metadata, depending on the particular embodiment. In the
instance of an anti-pattern, an administrator may add meta-
data associating the anti-pattern to a pattern which can be
implemented to resolve the issues presented by the anti-pat-
tern. The pattern or anti-pattern is then typically stored to the
database 222 or other data storage location.

In some embodiments, when the infrastructure monitoring
and management server 234 includes stored anti-patterns, a
process may execute within the networked computing envi-
ronment to identify service models having CI configuration
settings matching anti-patterns. When an anti-pattern is iden-
tified within a current configuration of the networked com-
puting environment 200, a notice may be provided to an
administrator. In some embodiments, when an anti-pattern is
identified and the identified anti-pattern includes a pattern
associated in metadata, the CI configuration settings of the
pattern may be automatically implemented, such as through a
provisioning application or process.

In some embodiments, upon detection of a performance
metric violation by a process of the infrastructure monitoring
and management server 234, the process may search the
stored patterns, such as in the database 222, to identify a
pattern that may be implemented to resolve the performance
metric violation. When a pattern is identified, the pattern may
be automatically implemented, such as through a provision-
ing application or process. In other embodiments, a message
may be sent to an administrator including an identification of
the performance metric violation and data representative of
the identified pattern.

As discussed above, patterns and anti-patterns are identi-
fied and utilized with regard to Cls of service models. The Cls
of a service model may represent elements of IT infrastruc-
ture technology such as routers, switches, data storage
devices, servers, client computers, logical server programs
and processes, and applications and processes that execute on
server or client computers. Service models may be associated
with metrics. The metrics evaluate parameters of the service
model to obtain indicators of quality, availability, risk, and
heath levels of an underlying system and identify constituent
ClIs that are affecting the service model. These metrics and
indicators can be defined with Service Level Agreements or
Objectives (SLA or SLO) and their associated operational
level agreements.

US 9,336,331 B2

9

A servicemodel is an implementation of an abstract model,
such as is illustrated in FIG. 5. The abstract model of FIG. 5
includes a graphical representation of abstracted Cls of the
service model. FIG. 4 illustrates an abstraction of an example
CI. FIG. 3 illustrates a CI from which the abstraction of FIG.
4 may be generated.

FIG. 3 illustrates a data structure 302 according to an
example embodiment. The data structure 302 is an example of
a CI. The data structure 302 includes an identifier (DATA-
BASE SERVER DB3-#23), a name, a description, and other
data. The other data includes “# of Licenses,” a cost-per-
license, and maintenance costs. The data of the CI data struc-
ture 302 may be modified as discussed above. Upon modifi-
cation, a snapshot of'the data is stored in a database along with
a date when the data was changed. The snapshot may be used
following the modification should a change in system perfor-
mance be detected indicating a pattern or anti-pattern may be
present in a system configuration. A snapshot of the data
structure 302, along with other CIs of a service model, may
also be taken upon detection that the CI of the data structure
is associated with a service model that maintains or improves
performance over time indicating a possible pattern or
degrades performance of a service model over time indicating
a possible anti-pattern.

When building a service model, to which performance
metrics may be associated to measure performance of the
service model, abstractions of service model CIs, such as the
CI illustrated in FIG. 3, are made. FIG. 4 illustrated a data
structure 402 according to an example embodiment. The data
structure 402 is an example of an abstraction of the CI data
structure 302 of FIG. 3. A service model is comprised of one
or more abstracted configuration models and typically
includes one or more associated performance metrics to mea-
sure and monitor performance thereof when implemented. A
graphical representation of an example abstracted service
model is illustrated in FIG. 5.

FIG. 5 illustrates a graphical representation of an
abstracted service model 500 according to an example
embodiment. The abstracted service model 500 includes a CI
for each node of the service model and defines relationships
there between. For example, a server operating system
requires a server and database management systems, appli-
cation servers, J2EE containers, and Enterprise Java Beans
(EIBs) require a server having an operating system. Each
node, such as the servers, server operating system, database
management system (DBMS), and the like is an abstracted
CI, such as is illustrated and described with regard to the CI
data structure 402 of FIG. 4, although the configuration set-
tings of each CI will vary between CI types. When imple-
mented, each CI of the abstracted service model is associated
with an IT resource of a computing environment, such as the
networked computing environment 200 as illustrated and
described with regard to FIG. 2. When a snapshot of the Cls
is taken upon occurrence of a CI modification event, a
detected improvement or degradation of performance with
regard to the service model, or at another time, the CI con-
figuration values of the relevant Cls are taken and stored in a
database with a date of when the snapshot was taken. In some
embodiments, a time of day when the snapshot was taken is
also included with the date.

When a candidate or actual pattern is detected, the
abstracted service model is a template for generating the
pattern data structure. The CI configuration settings for the
pattern are populated into the pattern data structure, which is
an instance of the abstracted service model. The pattern may
then be augmented with additional data, such as metadata.
The additional data may include a pattern name and classifi-

10

15

20

25

30

35

40

45

50

55

60

65

10

cation that is descriptive and unique among patterns that help
in identifying and referring to the pattern. The additional data
may also include data describing the goal behind the pattern
and the reason for using it, alternative names for the pattern,
motivations for using the pattern such as use case descrip-
tions, and contextual information describing a context within
which the pattern may be useful. In some embodiments, the
additional data may also include a graphical representation of
the pattern, such as is illustrated in F1G. 5, and a listing of ClIs,
processes, services, and devices utilized in the pattern and
descriptions of their respective roles. Some patterns might
also include a description of results, side effects, and tradeoffs
caused by using the pattern, or a description of how to imple-
ment the pattern. The additional data in some of these
embodiments may also include an instruction set for a provi-
sioning application to automatically implement the pattern.
Other additional data may be included in these and other
embodiments.

Following instantiation of a pattern and population of the
pattern with CI configuration settings and relevant additional
data, the pattern is stored, such as in the database 222 of FIG.
2.

Pattern and Anti-Pattern Usage and Sharing

Stored pattern data structures representing patterns and
anti-patterns are utilized for two distinct purposes. Patterns
define known solutions that are likely to remediate success-
fully particular defined problems. Anti-patterns are defined
problems that may exist in systems. Anti-patterns can there-
fore be used to evaluate a configuration of a system within
which a service model of an anti-pattern is present. If the
service model of an anti-pattern is present in a system, the
anti-pattern is utilized to determine if there is a match, either
exact or relative to some degree. If there is a match, a potential
problem is identified. A problem may also be identified
through application of performance metrics. In either case of
problem identification, details of the identified problem may
be used to automatically or manually query the stored pat-
terns to identify potential solutions. The solutions may be
identified through the additional data of the stored patterns as
described above. An identified pattern may then be selected
and implemented to resolve the identified problem. However,
in some embodiments, metadata of an anti-pattern may
include a reference to one or more patterns that will remediate
the anti-pattern.

FIG. 6 is alogical block diagram of a system 600 according
to an example embodiment. The system 600 is an example of
a system within which pattern identification and usage is
performed. The example system 600 includes a system under
management 618, such as the networked computing environ-
ment 200 of FIG. 2 of a software system deployed therein.

The system 600 includes a system management application
602. The system management application 602 may include
various modules to perform various tasks. For example, the
system management application 602 may include a metric
monitoring module 604, a pattern and anti-pattern module
606, and a provisioning application module 608. Although
these modules 604, 606, 608 are illustrated and described
with regard to a single system management application 602,
the functionality of these modules 604, 606, 608 may be
provided by individual applications, by more than one appli-
cation, within the same module, or other arrangement.

The system management application 602 is connected to a
network 610, such as one or more of a local area network, the
Internet, or other network. Also connected to the network 610
are the system under management 618, a metric database 612,

US 9,336,331 B2

11

a configuration item (CI) database 614, and a pattern database
616. Although the system under management 618 is illus-
trated as a single box, the system under management may be
the networked computing environment 200 of FIG. 2, an
instance of the service model 500 illustrated in FIG. 5, an
enterprise application, or other application, computing envi-
ronment, or set of computing resources.

The metric monitoring module 604, upon identification of
atrend of improving and decreasing performance or a perfor-
mance metric violation, may also send a communication to
the pattern and anti-pattern module 606 to evaluate the iden-
tified trend or performance metric violation to determine if a
new pattern has been identified. In some embodiments, the
current configuration of the Cls of the relevant service mod-
ule may be evaluated in view of known patterns and anti-
patterns stored in the pattern database 616. If a known pattern
or anti-pattern is not identified, a process of the pattern and
anti-pattern module 606 may evaluate metric values stored in
the metric database 612 in view of CI configurations settings
stored in the CI database 614 to define a potential pattern.

The metric monitoring module 604 may include a process
that monitors metric results stored in the metric database 612
to identity trends of improving and decreasing performance.
The metric monitoring module 604 also includes a process
that identifies when performance metric violations, such as
service level agreement violations, occur. Upon detection of
decreasing performance or a metric violation, the process
may query patterns stored in the pattern database 616 to
identify patterns that may be relevant for resolving the metric
violation or improving the decreasing performance of the
system under management 618. Upon identification of a pat-
tern to resolve the identified issue, the process of the metric
monitoring module 604, in some embodiments, may submit a
request to a service desk application requesting manual
implementation of the identified pattern by an administrator.
In other embodiments, upon identification of a pattern to
resolve the identified issue, the process may submit a com-
mand to the provisioning application 608 requesting auto-
mated implementation of the identified pattern. The provi-
sioning application 608 in such instances will then deploy the
CI settings of the pattern to the system under management
618.

The metric monitor module 604, upon identification of a
trend of improving and decreasing performance or a perfor-
mance metric violation, may also send a communication to
the pattern and anti-pattern module 606 to evaluate the iden-
tified trend or performance metric violation to determine if a
new pattern has been identified. In some embodiments, the
current configuration of the Cis of the relevant service module
may be evaluated in view of known patterns and anti-patterns
stored in the pattern database 616. If a known pattern or
anti-pattern is not identified, a process of the pattern and
anti-pattern module 606 may evaluate metric values stored in
the metric database 612 in view of CI configurations settings
store in the CI database 614 to define a potential pattern.

Upon detection and definition of a pattern or anti-pattern,
the pattern and anti-pattern module 606 may send a copy of
the pattern or anti-pattern over the network to a pattern shar-
ing service (not illustrated). The pattern sharing service may
be a service hosted by an industry consortium, a software
development company, or other entity for sharing knowledge
through identified patterns and anti-patterns. When a pattern
or anti-pattern is sent to the pattern sharing service, a process
may execute upon the received pattern to identify similarities
with other patterns previously received by the service. Dupli-
cate patterns are discarded. The pattern sharing service then
makes the remaining patterns and anti-patterns available. In

10

15

20

25

30

35

40

45

50

55

60

65

12

some instances, the patterns and anti-patterns may be pushed
to or periodically downloaded to the pattern database 616 of
constituents of the pattern sharing service.

FIG. 7 is ablock diagram of a computing device according
to an example embodiment. In one embodiment, multiple
such computer systems are utilized in a distributed network to
implement multiple components in a transaction-based envi-
ronment. An object-oriented, service-oriented, or other archi-
tecture may be used to implement such functions and com-
municate between the multiple systems and components. One
example computing device in the form of a computer 710,
may include a processing unit 702, memory 704, removable
storage 712, and non-removable storage 714. Memory 704
may include volatile memory 706 and non-volatile memory
708. Computer 710 may include—or have access to a com-
puting environment that includes—a variety of computer-
readable media, such as volatile memory 706 and non-vola-
tile memory 708, removable storage 712 and non-removable
storage 714. Computer storage includes random access
memory (RAM), read only memory (ROM), erasable pro-
grammable read-only memory (EPROM) & electrically eras-
able programmable read-only memory (EEPROM), flash
memory or other memory technologies, compact disc read-
only memory (CD ROM), Digital Versatile Disks (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium capable of storing computer-readable
instructions. Computer 710 may include or have access to a
computing environment that includes input 716, output 718,
and a communication connection 720. The computer may
operate in a networked environment using a communication
connection to connect to one or more remote computers, such
as database servers. The remote computer may include a
personal computer (PC), server, router, network PC, a peer
device or other common network node, or the like. The com-
munication connection may include a Local Area Network
(LAN), a Wide Area Network (WAN) or other networks.

Computer-readable instructions stored on a computer-
readable storage medium are executable by the processing
unit 702 of the computer 710. A hard drive, CD-ROM, and
RAM are some examples of articles including a computer-
readable storage medium. For example, a computer program
725 capable performing one or more of the method described
herein. Further, the computer program 725 may be the system
management application 602 program illustrated and
described with regard to FIG. 6.

Method Embodiments

FIG. 8, FIG. 9, and FIG. 10 provide examples of methods
according to some example embodiments. FIG. 8 is an
example of a method that may be performed to identify pat-
terns and anti-patterns within a system. FIG. 9 is an example
of a method that may be performed to utilize patterns to
improve system performance. FIG. 10 is an example of a
method that may be performed to share patterns and anti-
patterns.

FIG. 8 is a flow diagram of a method 800 according to an
example embodiment. As stated above, FIG. 8 is an example
of' a method that may be performed to identify patterns and
anti-patterns within a system. The method 800 includes main-
taining 802, in a configuration item database stored on a data
storage device, data representative of configuration item set-
tings of a computing system. The configuration item database
may include configuration item data representative of current
configuration settings and previous configuration settings.
The configuration item data typically includes a time element

US 9,336,331 B2

13

identifying a period when each particular item of configura-
tion item data was operative within the computing system.

The method 800 further includes periodically applying 804
at least one performance metric to the computing system
through execution of instructions on at least one computer
processor to obtain performance metric data indicative of
performance with regard to at least a portion of the computing
system. In various embodiments, the performance metrics
may be retrieved from a database or other storage repository
or the performance metrics may be hardcoded into a com-
puter program performing the method 800. The periodic basis
at which a particular performance metric is applied 804 may
be set by a configuration setting. The periodic basis may be
hourly, daily, weekly, monthly, or other period depending on
the embodiment and the configuration.

Within the method 800, the performance metric data is also
stored 806 in a performance metric data database. The per-
formance metric data is typically stored with a time element
representative of a time when the performance metric data
was generated.

Additionally the method 800, based on performance levels
over time, includes identifying 808 candidate configuration
setting patterns associated with maintained and improved
service levels. The identifying 808 of method 800 also
includes identifying 808 candidate configuration setting anti-
patterns associated with deteriorating and non-improving,
low service levels. The method 800 may then store 810 data
representative of the identified candidate configuration set-
ting patterns and anti-patterns.

In some other embodiments, identifying 808 the candidate
configuration setting patterns and anti-patterns includes iden-
tifying a performance level change over time by comparing
performance metric data of a particular performance metric.
Typically, the performance level change is identified between
a current configuration and a previous configuration. The
method 800 in such embodiments further includes comparing
configuration item settings of the current configuration and
the previous configuration to identify configuration item con-
figuration setting differences. The identified configuration
item setting differences, in such embodiments, may form at
least a portion of a candidate configuration setting pattern or
anti-pattern.

In some other embodiments, identifying 808 the candidate
configuration setting patterns and anti-patterns includes iden-
tifying a performance level change over time by comparing
performance metric data of a particular performance metric.
Typically, the performance level change is identified between
a current configuration and a previous configuration. The
method 800 in such embodiments further includes comparing
configuration item settings of the current configuration and
the previous configuration to identify configuration item con-
figuration setting differences. The identified configuration
item setting differences, in such embodiments may form at
least a portion of a candidate configuration setting pattern or
anti-pattern.

Some such embodiments include presenting a view of an
identified candidate pattern or anti-pattern to allow an admin-
istrator to review the candidate. The view may also allow the
administrator to confirm or reject the candidate pattern or
anti-pattern. Some embodiments may also allow the admin-
istrator to add metadata to the candidate as described above.
Following receipt of confirmation from the administrator,
such embodiments of the method 800 include generating a
pattern data structure including the pattern or anti-pattern and
storing the pattern data structure in a pattern repository on a
data storage device.

20

30

40

45

50

14

FIG. 9 is a flow diagram of a method 900 according to an
example embodiment. As stated above, FIG. 9 is an example
of'a method 900 that may be performed to utilize patterns to
improve system performance. The method 900 includes mea-
suring performance of a computing system by applying 902 at
least one performance metric retrieved from a performance
metric database. When applying 902 the at least one perfor-
mance metric reveals a performance issue within the comput-
ing system, the method 900 includes querying 904 a pattern
repository to identify a pattern. Implementation of the iden-
tified pattern is likely to improve performance of the comput-
ing system with regard to the revealed performance issue.
Thus, the method 900 also includes implementing 906 the
identified pattern in the computing system.

The performance metric database, in some embodiments,
stores performance metrics that are executable to measure
performance of the computing system. The metrics operate
based on performance related data obtained from processes of
the computing system and devices upon which the computing
system operates, such as through SNMP messaging. In some
embodiments, the method 900 further includes measuring
performance of the computing system subsequent to imple-
menting 906 the identified pattern to confirm the imple-
mented pattern resolved the intended performance issue and
did not create new one. The performance measurement may
be performed according to a metric identified in the data of the
implemented 906 pattern, metrics relevant to a modified ser-
vice model, or other metrics.

FIG. 10 is a flow diagram of a method 1000 according to an
example embodiment. As stated above, FIG. 10 is an example
of'a method 1000 that may be performed to share patterns and
anti-patterns. The method 1000 is typically performed at least
in part on a server that operates on a network, such as the
Internet, to receive patterns from constituent systems and
organization and make the patterns available to other con-
stituents.

The method 1000 includes receiving 1002 pattern data
structures from a plurality of constituent system improve-
ment module systems. The system improvement modules
may include a module such as the pattern and anti-pattern
module 606 illustrated and described with regard to FIG. 6.
The pattern data structures of the method 1000 may each
include data representative of computing system configura-
tion item configuration settings defining a pattern or anti-
pattern and metadata descriptive of the pattern or anti-pattern
represented by the data structure.

The method 1000 also includes comparing 1004 a received
pattern data structure to other received pattern data structures
to identify variations and generate groups of similar pattern
data structures. The method 1000 may then present 1006 a
view, to a user, of commonality between a group of similar
pattern data structures and receive 1008 input, from the user,
to abstract the commonality between the group of similar
pattern data structures to generate a single template pattern
data structure. The method 1000 may then store 1010 the
template pattern data structure in a network location acces-
sible by the constituent system improvement module systems
to allow the constituent system improvement module systems
to download the template pattern data structure.

In some embodiments, presenting 1006 the view of the
commonality includes presenting, in a user interface, a rep-
resentation of configuration item configuration settings that
are identical within the group of similar pattern data struc-
tures and configuration item configuration settings that
appear in less than the entire group of similar pattern data
structures. The user interface in such embodiments is capable
of receiving selection input of configuration item configura-

US 9,336,331 B2

15

tion settings that appear in less than all of the group of similar
pattern data structures to include in the single template data
structure. The user interface is also capable of receiving input
to initiate a process to generate the single template data struc-
ture.

It is emphasized that the Abstract is provided to comply
with 37 C.F.R. §1.72(b) requiring an Abstract that will allow
the reader to quickly ascertain the nature and gist of the
technical disclosure. It is submitted with the understanding
that it will not be used to interpret or limit the scope or
meaning of the claims.

In the foregoing Detailed Description, various features are
grouped together in a single embodiment to streamline the
disclosure. This method of disclosure is not to be interpreted
as reflecting an intention that the claimed embodiments of the
inventive subject matter require more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive subject matter lies in less than all
features of a single disclosed embodiment. Thus, the follow-
ing claims are hereby incorporated into the Detailed Descrip-
tion, with each claim standing on its own as a separate
embodiment.

It will be readily understood to those skilled in the art that
various other changes in the details, material, and arrange-
ments of the parts and method stages which have been
described and illustrated in order to explain the nature of the
inventive subject matter may be made without departing from
the principles and scope of the inventive subject matter as
expressed in the subjoined claims.

What is claimed is:

1. A system comprising:

at least one processor;

at least one memory device;

at least one data storage device;

apattern repository including data stored on the at least one

data storage device, the pattern repository holding pat-
tern data structures each including data representative of
computing system configuration item configuration set-
tings defining a pattern or anti-pattern, the data repre-
sentative of a pattern defining a known solution to a
defined problem and the data representative of an anti-
pattern defining a bad solution to a defined problem;

a performance metric database storing:

performance metrics executable by the at least one pro-
cessor to measure performance of a computing sys-
tem based on performance related data obtained from
processes of the computing system and devices upon
which the computing system operates; and

performance metric data provided as a result of applying
performance metrics, each performance metric data
item including a time data element identifying when
the performance metric data was generated; and

a system improvement module having instructions stored

and retrievable from the at least one data storage device

into the at least one memory device, the instructions

executable by the at least one processor to:

measure performance of the computing system by
applying at least one performance metric retrieved
from the performance metric database;

when applying the at least one performance metric
reveals a performance issue within the computing
system, automatically query the pattern repository to
identify a pattern, the implementation of which is
likely to improve performance of the computing sys-
tem with regard to the revealed performance issue, the
performance issue revealed by matching at least a
portion of the at least one performance metric with an

10

15

20

25

30

35

40

45

50

55

65

16

anti-pattern, the automatic query performed based at
least in part on the matched anti-pattern to identify a
pattern that defines a solution to a defined problem
associated with the matched anti-pattern; and

when the automatic query identifies a pattern, automati-
cally implement the identified pattern in the comput-
ing system.

2. The system of claim 1, wherein the system improvement
module includes further instructions executable by the at least
one processor to:

measure performance of the computing system, subse-

quent to implementing the identified pattern, based on
the at least one performance metric and other perfor-
mance metrics to confirm the identified pattern, when
implemented, resolved the previously revealed perfor-
mance issue and to identify other performance issues
that may arise due to the implementation of the identi-
fied pattern.

3. The system of claim 1, wherein implementing the iden-
tified pattern in the computing system includes:

sending a command to a provisioning computer applica-

tion to implement the configuration item configuration
settings of the identified pattern or anti-pattern within
the computing system.

4. The system of claim 1, wherein the system improvement
module includes further instructions executable by the at least
one processor to:

when the querying of the pattern repository to identify a

pattern, the implementation of which is likely to
improve performance of the system, fails to identify a
pattern, compare configuration item settings of a current
configuration of the computing system and a previous
configuration of the computing system to identify con-
figuration item configuration setting differences, the
identified configuration item setting differences being a
candidate configuration setting anti-pattern.

5. The system of claim 4, wherein the system improvement
module includes further instructions executable by the at least
one processor to:

receive input confirming the candidate configuration set-

ting anti-pattern as an anti-pattern;

generate a pattern data structure including the anti-pattern

and storing the pattern data structure in the pattern
repository; and

wherein the configuration item configuration settings of

the anti-pattern represented by the data structure can be
copied from the data structure and implemented in
another computing system.

6. The system of claim 1, wherein the system improvement
module includes further instructions executable by the at least
one processor to:

evaluate a configuration of the computing system based on

anti-patterns retrieved from the pattern repository to
identify potential or actual configuration issues.

7. The system of claim 6, wherein the system improvement
module includes further instructions executable by the at least
one processor to:

when the evaluation of the configuration of the computing

system reveals a potential or actual configuration issue
within the computing system, query the pattern reposi-
tory to identify a pattern, the implementation of which is
likely to resolve the revealed potential or actual configu-
ration issue; and

implement the identified pattern in the computing system.

8. A non-transitory computer-readable storage device, with
instructions stored thereon, which when executed by at least
one processor of a computer, cause the computer to:

US 9,336,331 B2

17

receive pattern data structures from a plurality of constitu-
ent system improvement module systems, the pattern
data structures each including data representative of
computing system configuration item configuration set-
tings defining a pattern or anti-pattern, the data repre-
sentative of a pattern defining a known solution to a
defined problem and the data representative of an anti-
pattern defining a bad solution to a defined problem, and
metadata descriptive of the pattern or anti-pattern repre-
sented by the data structure;
compare a received pattern data structure to other received
pattern data structures to identify variations and gener-
ate groups of similar pattern data structures;
present a view of commonality between a group of similar
pattern data structures;
receive input to abstract the commonality between the
group of similar pattern data structures to generate a
single template pattern data structure;
receive input adding metadata associating the single tem-
plate pattern data structure to another single template
pattern data structure,
when the single template pattern data structure defines
an anti-pattern, the added metadata associating the
single template pattern data structure to another single
template pattern data structure defining a pattern pro-
viding a solution to the defined problem of the anti-
pattern; and

when the single template pattern data structure defines a
pattern, the added metadata associating the single
template pattern data structure to another single tem-
plate pattern data structure defining an anti-pattern,
the defined problem for which the pattern defined in
the single template pattern data structure provides a
solution; and

store the single template pattern data structure in a network
location accessible by the constituent system improve-
ment module systems to allow the constituent system
improvement module systems to download the single
template pattern data structure.

9. The non-transitory computer-readable storage device of
claim 8, wherein the data representative of the configuration
item configuration settings of the pattern or anti-pattern rep-
resented within the data structures can be copied from a
downloaded data structure and implemented by a constituent
system improvement module in a computing system of the
constituent system improvement module.

10. The non-transitory computer-readable storage device
of claim 8, wherein each pattern data structure includes data
from which a graphical representation of the configuration
setting pattern or anti-pattern can be generated and data iden-
tifying configuration items, processes, and services related to
the pattern or anti-pattern.

11. The non-transitory computer-readable storage device
of claim 8, wherein:

a pattern data structure including configuration item con-
figuration settings defining a pattern includes configu-
ration item configuration settings associated with main-
tained and improved service levels; and

a pattern data structure including configuration item con-
figuration settings defining an anti-pattern includes con-
figuration item configuration settings associated with
deteriorating and non-improving, low service levels.

12. The non-transitory computer-readable storage device
of claim 8, wherein the data representative of computing
system configuration item configuration settings defining a

10

15

20

35

40

45

65

18

pattern or anti-pattern include configuration item configura-
tion settings of at least one logical process and at least one
physical device.
13. The non-transitory computer-readable storage device
of claim 8, wherein the instructions executable by the proces-
sor cause the computer to receive input to abstract the com-
monality between the group of similar pattern data structures
to generate a single template pattern data structure includes
instructions executable by the at least one processor to cause
the computer to:
present, in a user interface on a display device of the com-
puter, a representation of:
configuration item configuration settings that are iden-
tical within the group of similar pattern data struc-
tures; and
configuration item configuration settings that appear in
less than the entire group of similar pattern data struc-
tures;
receive selection input via the user interface of configura-
tion item configuration settings that appear in less than
all of the group of similar pattern data structures to
include in the single template data structure; and
generate the single template data structure.
14. A method comprising:
receiving pattern data structures from a plurality of con-
stituent system improvement module systems, the pat-
tern data structures each including data representative of
computing system configuration item configuration set-
tings defining a pattern or anti-pattern, the data repre-
sentative of a pattern defining a known solution to a
defined problem and the data representative of an anti-
pattern defining a bad solution to a defined problem, and
metadata descriptive of the pattern or anti-pattern repre-
sented by the data structure;
comparing a received pattern data structure to other
received pattern data structures to identify variations and
generate groups of similar pattern data structures;

presenting a view of commonality between a group of
similar pattern data structures;

receiving input to abstract the commonality between the

group of similar pattern data structures to generate a
single template pattern data structure;

receiving input adding metadata associating the single

template pattern data structure to another single tem-

plate pattern data structure,

when the single template pattern data structure defines
an anti-pattern, the added metadata associating the
single template pattern data structure to another single
template pattern data structure defining a pattern pro-
viding a solution to the defined problem of the anti-
pattern; and

when the single template pattern data structure defines a
pattern, the added metadata associating the single
template pattern data structure to another single tem-
plate pattern data structure defining an anti-pattern,
the defined problem for which the pattern defined in
the single template pattern data structure provides a
solution; and

storing the single template pattern data structure in a net-

work location accessible by the constituent system
improvement module systems to allow the constituent
system improvement module systems to download the
single template pattern data structure.

15. The method of claim 14, wherein the data representa-
tive of the configuration item configuration settings of the
pattern or anti-pattern represented within the data structures
can be copied from a downloaded data structure and imple-

US 9,336,331 B2

19

mented by a constituent system improvement module in a
computing system of the constituent system improvement
module.

16. The method of claim 14, wherein each pattern data
structure includes data from which a graphical representation
of the configuration setting pattern or anti-pattern can be
generated and data identifying configuration items, pro-
cesses, and services related to the pattern or anti-pattern.

17. The method of claim 14, wherein:

a pattern data structure including configuration item con-
figuration settings defining a pattern includes configu-
ration item configuration settings associated with main-
tained and improved service levels; and

a pattern data structure including configuration item con-
figuration settings defining an anti-pattern includes con-
figuration item configuration settings associated with
deteriorating and non-improving, low service levels.

18. The method of claim 14, wherein the data representa-
tive of computing system configuration item configuration
settings defining a pattern or anti-pattern include configura-
tion item configuration settings of at least one logical process
and at least one physical device.

10

15

20

20

19. The method of claim 14, wherein the instructions
executable by the processor cause the computer to receive
input to abstract the commonality between the group of simi-
lar pattern data structures to generate a single template pattern
data structure includes instructions executable by the at least
one processor to cause the computer to:

present, in a user interface on a display device of the com-

puter, a representation of:

configuration item configuration settings that are iden-
tical within the group of similar pattern data struc-
tures; and

configuration item configuration settings that appear in
less than the entire group of similar pattern data struc-
tures;

receive selection input via the user interface of configura-

tion item configuration settings that appear in less than
all of the group of similar pattern data structures to
include in the single template data structure; and

generate the single template data structure.

#* #* #* #* #*

